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by Pei  Chi Chou, Robert R. Karpp, and Lawrence J. Zajac 

DREXEL INSTITUTE OF TECHNOLOGY 

ABSTRACT 

An approximate a n a l y t i c a l  so lu t ion  f o r  the decay of s t rong  plane 
shocks i n  an ideal gas i s  developed as  t h e  f i r s t  s t e p  i n  the study of 
sphe r i ca l  shocks produced by hypervelocity impact. A graphica l  solu-  
t i o n  t o  t h e  same problem is  obtained by a stepwise c h a r a c t e r i s t i c s  
method i n  order  t o  e s t a b l i s h  a c r i t e r i o n  with which tc! c m p . ~ c  the 
present  a n a l y t i c a l  so lu t ion .  
p l i f y i n g  assumptions, the a n a l y t i c a l  so lu t ion  y i e l d s  a good time- 
h i s t o r y  representa t ion  of the  shock wave phenomena i n  an i d e a l  gas. 
For weak shocks, both the a n a l y t i c a l  and graphica l  so lu t ions  agree 
favorably with F r i ed r i chs '  so lu t ion  at small values  of t i m e .  By a 
modif icat ion of t h e  equation of state, the  approximation t ech  'q 
developed i n  t h i s  r epor t  can be extended t o  o ther  media. F& 

Although it i s  based upon c e r t a i n  sim- 

i 



TABLEOFCONTENTS 
PAGE 

I. Introduction, . a . . 1 

II.,. Statement of Problem, . . . a . . e . 3 

111. Friedrichso Solution for Weak Shocks, ~ ~ ~ . . 4 

IV. Present Solutions for Strong Shocks ~ ~ , . . . 5 

1. Governing Equations for Shocks and, . . . . . . . . 5 
Isentropic Waves. 

2. Approximate Analytical Solution for . ~ . . . , . . 6 
Strong Shocks 

a. General discussion 
b. Development of Equations 

3. Graphical Solution by the Method of Characteristics . . . 9 

a. General discussion 
b. 
c. 
d. Examples 

Unit operations for wave interactions 
Graphical solutions for wave interactions 

1, Accuracy of Assumptions . e ~ ., . 17 
2. Comparison of Solutions . , . ~ . . ~ , ~ , 19 

VI. Behavior of Weak Shocks at Large Values of Time according 20 
to Approximate Solutions 

VII. Concluding Remarks 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 . 21 

X. Notations e . .  . o . e  e e 36 

A. Behavior of the Shock Polar and Characteristice ~ 37 
Lines in the State Planes 

B. Relative position of Shock Paths according to the two . . 41 
Approximat ions 

... 
111 



1. 

2 .  

3, 

4 .  

5 .  

6, 

7. 

a. 

LIST OF FIGURES 
PAGE 

Shock front overtaken by a rarefaction wave - physical plane 
Regions in the physical plane used in the stepwise 
characteristics method, 

State planes 

Comparison of solutions 

Pressure distribution behind a strong shock 

Shock velocity decay for a strong shock 

Pressure decay for a strong shock 

Behavior of weak shocks at large values of time (Schematic) 

LIST OF TABLES 

1, Partial List of State Properties 

2. Magnitude of error in Slope caused by assuming the 
Characteristics are Straight lines, 

3. Change in Particle Velocity along a Characteristic 

24 

25 

26 

27  

28 

29 

30 

31 

32 

33 

34 

iV 



DECAY OF STRONG PLANE SHOCKS IN AN IDEAL GAS 

I. Introduction: 

The shock front created by hypervelccity impact in a liquid is very close 

to hemispherical in shape as evidenced by the experiments performed by Stepka. 

In a previous report, 

1 

based upon the spherical symmetry of the shock front, the 2 

authors have developed an approximate semi-empirical equation which gives the 

time-history of the peak pressure behind the shock front, 4 Other investigated, 
have also attempted to investigate the? sphericai shock in liquids or solids by 

analytical methods; however, no conclusive results have been obtained. These 

anaiyticai approaches, which are based upon certain simiiarity assumptions first 

made by G .  I. Taylor, yield good results in the solution of blast waves in air, 

but so far they have not proved satisfactory for the solution of impact problems. 

Since the pure analytical approach has not been successful, it is desirable to 

employ numerical methods. 

Two such numerical methods that may be employed for the calculation of the 

decay of shock waves are the finite-difference method and the characteristics 

method. 

but at times its accuracy is inferior, especially in the region bordering the 

The finite-difference method is more convenient for computer calculation, 

5 shock front, 

exact path are desired, the characteristics method will be employed. 

Therefore, in the present problem, where the peak pressure and the 

There are two factors which govern the decay of three-dimensional (or two- 

dimensional) strong shocks- 

1. The effect of the space dispersion and 

2. the interaction between the shock front and the 
rarefaction waves originating from free surfaces. 
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The latter of these two (the rarefaction wave effect) can best be studied 

by the decay behavior of plane shocks, In this report, the decay of plane shocks 

is studied by the characteristic method, which is considered to be the first step 

in the analysis of the spherical shock problem, 

Al'tshuler and his coworkers6 have calculated the decay of strong plane 

shocks in certain special cases by the stepise characteristics method, However, 

the results have not been reported in detail, nor has any approximate analytical 

expression for the shock path been obtained. 

ideal gas, Friedrichs derived approximate equations for the shock path by the 

method of characteristicsO7 

by Lighthill.' 

shocks in solids or liquids with the Murnaghan equation of state' by assuming the 

weak shocks to be isentropic compressions, 

In the case of weak shocks in an 

The accuracy of Friedrichs method was later studied 

Fowles likewise obtained similar equations for the decay of weak 

By following an analytical approach similar to the one used by Friedrichs, 

we have obtained an approximate equation for the shock path of a strong shock 

in an ideal gas, 

has also been applied to the same problem, and the results compared with the 

approximate analytical solutions with excellent agreement. 

modification of the equation of state, the method developed in this report can be 

easily applied to a liquid or solid medium, 

The characteristics method using a stepwise graphical scheme 

With a slight 

In the analytical approach, it is assumed that the reflected waves and 

contact lines resulting from the interaction between a rarefaction wave and a. 

strong shock are weak and can therefore be neglected. 

exact shock conditions are used instead of the approximate shock conditions used 

by Friedrichs. 

Across the shock front, 

It is interesting to note that for weak shocks, according to Friedrichs' 

solution, the distance between the shock front and rarefaction tail (width of the 

shock wave) increases as the square root of time for large values of time, 
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According to the present solution, the width of the shock wave reduces to 

zero at some finite, although large, time. 

described in Section VI, 

found to lie between the tail predicted by the present approximation and the tail 

predicted by Friedrichst approximation. 

This inconsistancy in solutions is 

The exact position of the tail of the rarefaction wave is 

In this report, the precise problem to be solved is first stated and then 

Friedrichst existing solution for weak shocks is summarized. 

present approximate anaytical solution for  strong shocks is presented along with 

the necessary simplifying assumptions. 

pertinent to the solution of the present problem follows. 

a solution by the stepwise characteristics method is presented along with a new 

graphical scheme utilizing a modified state plane. The accuracy of the present 

analytical solution is next studied by approximately determining the errors intro- 

duced by the simplifying assumptions. 

(Friedrichst solution for weak shocks, the present anaytical solution, and the 

stepwise characteristics solution) is made for shocks of different strengths. 

discussion of the behavior of weak shocks according to the two approximate analytical 

solutions is next given. The report is concluded with statements on the significance 

and possible extensions of the approximation procedure developed herein. 

A derivation of the 

A summary of the method of characteristics 

Then the procedure for 

A detailed comparison of the three solutions 

A 

11. Statement of Problem 

The problem to be studied is identical with one treated by Friedrichs.' 

consists of a semi-infinite tube containing an initially stagnant, ideal gas 

under the influence of a piston operating at the closed end. The piston is first 

accelerated to a constant velocity; then, after a small displacement, it is sudden- 

ly arrested and thereafter remains motionless, as shown in figure 1. 

It 
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The instantaneous acceleration of the piston into the gas produces a 

shock wave of constant strength and velocity, The sudden arresting of the piston, 
, at the point (x t ) in the x-t plane, produces a centered simple rarefaction 

1' 1 

I wave emanating from that point, The head of the rarefaction wave, which is 

travelling at a greater speed than the shock, eventually overtakes the shock front 

at (x2, t ) where an interaction between the two waves takes place, Consequently, 

the shock velocity and the pressure ratio deteriorate in magnitude and strength. 
2 , 

A complete solution of the problem involves the determination of the path 

of the shock front in the x-t plane and a description of the state of the gas behind 

the shock. 

111. Friedrichs' Solution for Weak Shocks 

As illustrated by Friedrichs, his solution is accurate for weak or moderate 

shocks with excess pressure ratios of 1.5 or lessD' 

below since it will be used later for purposes of comparison, 

His solution is summarized 

The approximations upon which his method is based are obtained by neglecting 

shock strength terms of third order or higher. As a consequence, the change in 

entropy across the shock front is ignored, One may then disregard the "back 

reaction" of the shock on the wave motion if the conservation laws across the 

shock are appropriately modified, Using the above approximations, Friedrichs 

determined the following equation for the path of the shock front in the x-t plane, 

for t >t, 

u2 where K =  
L C , -  uz a+ 1 
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For time t c t  , t h e  shock motion is represented by t h e  s t r a i g h t  l i n e  
2 

x = U;t: 

whore 

Also, t h e  excess p res su re  r a t i o  a t  l a rge  times approaches t h e  following 

expressior. as3mpotical ly ,  

and t h e  p re s su re  d i s t r i b u t i o n  over t h e  

i s  approximately given by 

wave zone, f o r  l a rge  va lues  of  time, 

An a n a l y s i s  of t h e  accuracy of Friedrichs'method appl ied  t o  s t rong  shocks 

w i l l  be presented i n  sec t ion  (V). 

IV. Present Solu t ions  f o r  Strong Shocks 

1. Governing Equations f o r  Shocks and Isen t ropic  Waves 

The exact equations governing t h e  f l u i d  p rope r t i e s  ac ross  a r i g h t - t r a v e l l i n g  
b 

shock are 
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where all velocities are referred to ground. Subscripts 1 and 2 refer 

respectively to the fluid properties ahead of and behind the shock front. 

Equations (9 through (8) are derived from the continuity, momentum and 

energy equations, and the equation of state of an ideal gas,” Application 

of the theory of characteristics to the partial differential equation governing 

unsteady, one-dimensional, constant area, isentropic flow yields the following 

characteristic relationships 

where the upper and lower signs refer respectively to waves travelling to the 

right and left relative to the fluid, 

pressure and sound speed are related by the following isentropic equation. 

For regions of constant entropy, the 

2. Amroximate Analvtical Solution for Strong Shocks 

a. General Discussion 

To develop an analytical solution for strong shocks, it is necessary to 

make certain basic symplifying assumptions. 

Friedrichs neglects the change in entropy across the shock front and assumes 

that the simple wave behind the front is unaffected by the shock. 

shocks, however, the entropy change across the shock is appreciable and can no 

longer be neglected. 

the original shock or the original rarefaction wave, 

For weak or moderate shocks, 

For strong 

Fortunately, the reflected wave system is much weaker than 

Consequently, our approach 

utilizes the exact shock conditions, equations (5) through (8) ,  but with the 

simplifying approximat ions that : 
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1. in the original rarefaction wave,characteristic lines remain 
straight lines and that 

2 .  the particle velocity u along any one of these characteristic 
lines remains constant., 

With these assumed values of particle velocity u and the exact equations across 

-the shock, the path of the shock front can be determined. For points directly 

behind the front, the sound speed as calculated from the exact shock equation (6) 

is different from the sound speed on the same straight characteristic line near 

point (x , t ) Therefore, in the wave zone behind the shock front, the present 

approach results in an inconsistency in sound speed (and pressure). 
1 1  

Consequently, 

the exact shock equations are used to calculate sound speeds and pressures at 

points just behind the shock front. But the sound speeds and pressures at points 

on the tail of the rarefaction wave are computed by the characteristic equations, 

and a linear variation in properties between the shock front and rarefaction tail 

is assumed. 

The present assumptions introduce very slight errors in the early stage of 

the propagation of the shock front because the rarefaction wave has undergone 

only small deflections caused by the shock-rarefaction interactions. For later 

stages , however, greater errors are introduced since greater deflections are 
encountered. 

b. Develoument of Eauations 

In the present problem, the particle velocity u ahead of the shock front 

is zeroa Therefore, equation (5) can be rearranged to yield the following 

relationship between shock propagation velocity U and gas particle velocity uo 

where the subscript notation corresponds to figure 1. 

of the preceding section and equation (9), the following equation 

Using assumption (1) 

of the straight 
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c h a r a c t e r i s t i c  l i n e s  within t h e  r a r e f a c t i o n  wave, centered a t  (x 

be obtained, 

t l ) #  can 

The integrated form of equation (10) is 

C - C t  = q (u-uz)  3 (13) 

which is  the re la t ionship  between sound speed and p a r t i c l e  v e l o c i t y  across  a 

r i g h t  t r a v e l l i n g  i s e n t r o p i c  wave. Combining equations (12) and (13), one obtains  

X - X 1  = (8%' u +  c z -  ? u t . ) ( t - t , ) ,  (14) 

The d i f f e r e n t i a l  form of  equation (14) i s  

where t h e  d i f f e r e n t i a t i o n  i s  taken with respec t  t o  U. 

shock f ron t ,  

For t h e  pa th  of t h e  

and 

Subs t i tu t ing  equation (16) i n t o  (15), and using equation (11) and assumption 

2, one obtains  t h e  following d i f f e r e n t i a l  equation r e l a t i n g  u and t .  

Equation (17) may be integrated,  with l i m i t s  t t o  t and u t o  u, and then t h e  
2 2 

following equations may be presented. 
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where 

and c is  ca l cu la t ed  from equat ions ( 5 )  and (6). Equations (14) and (18) 
2 

descr ibe  the  pa th  of t h e  shock f ron t  i n  terms of t he  parameter u, f o r  time 

t>t . For time octet the  shock path is t he  s t r a i g h t  l i n e  x= U t ,  where U 
2 2 1 1 

is obtained from equation (11) with u= u 
2 

An equation f o r  t h e  shock v e l o c i t y  U as a func t ion  of x and t can be 

obtained from equat ions (11) and (14). 

h 

f o r  t>t and x>x . The constant  shock ve loc i ty ,  f o r  o c t < t  , is, from equation 
2 2 2 

By combining equation (19) with equation (8) ,  one may ob ta in  the  following 

expression f o r  t h e  excess pressure  r a t i o  across  the  shock f ron t ,  f o r  t>t , 
2 

3 .  Graphical Solut ion by t h e  Method o f  Charac t e r i s t i c s  

a ,  General Discussion 

Since no exact  a n a l y t i c a l  so lu t ion  f o r  s t rong shocks e x i s t s ,  some 

c r i t e r i o n  must be  e s t ab l i shed  aga ins t  which the  present  so lu t ion  may be  compared, 

The method of  c h a r a c t e r i s t i c s  by stepwise. ca lcu la t ions  usua l ly  y i e lds  good r e s u l t s ,  

but  it is normally q u i t e  lengthly.  'OD l1 However, the  use of a new graphical  

- 9 -  



technique reduces t h e  amount of time required f o r  a s o l u t i o n  by t h i s  method. 
Y-1 

This technique u t i l i z e s  a (p/p ) '' 
conventional (c/c ) versus  (u/c  ) s t a t e  glane.  

t h i s  stepwise c h a r a c t e r i s t i c s  method, a n i  t h e  r e s u l t s  are compared with t h e  

a n a l y t i c a l  so lu t ion  f o r  s t rong shocks. 

- 
versus (u/c ) s t a t e  plane ins tead  of t h e  

1 1 

The b a s i c  problem i s  solved by 
1 1 

The p a r t i a l  d i f f e r e n t i a l  equation descr ibing unsteady, one-dimensional, 

constant  area,  i s e n t r o p i c  flow is  hyperbolic i n  na ture  and can be solved 

numerically by t h e  stepwise c h a r a c t e r i f t i c s  method. The method u t i l i z e s  two 

planes,  t he  physical plane ( c  t - x  diagmm of f i g u r e  2 )  and t h e  s t a t e  plane 

(c/c1 - u/u diagram of  f i g u r e  3a) .  

method, one replaces  a region with continuously varying f l u i d  p r o p e r t i e s  i n  

t h e  physical plane by a number of  smaller regions,  each having uniform f l u i d  

proper t ies  

has been used as opposed t o  t h e ' j a t t i c e  p o i n t  method") 

i s  then obtained by construct ing t h e  complete flow f i e l d  i n  t h e  phys ica l  and 

s t a t e  planes. 

1 
In  applying t h e  stepwise c h a r a c t e r i s t i c s  

1 

( t h u s ,  t h e  " f ie ld  method" adaptat ion of  t h e  c h a r a c t e r i s t i c s  method 

The graphical  s o l u t i o n  

Since t h e  f l u i d  remains i n  contact  with t h e  p i s t o n  f ace ,  t h e  i n i t i a l  

por t ion  of t h e  shock and r a r e f a c t i o n  waves may be constructed i n  t h e  physical  

plane, (see f igu re  

equation (20) with 

of t h e  shock f r o n t  

centered a t  (x , ,  c ,  

2 ) ,  The i n i t i a l  shock v e l o c i t y  U i s  ca lcu la ted  from 

u equal t o  t h e  p i s t o n  ve loc i ty ,  and then t h e  i n i t i a l  por t ion  

with s lope  c /U i s  constructed,  The simple r a r e f a c t i o n  wave 

t - )  

1 

2 

1 1  

may be  a r b i t r a r i l y  divided i n t o  s i x  regions by assuming 
1 1 1  

approximately equal increments of p a r t i c l e  v e l o c i t y  between adjacent  regions.  

The i n i t i a l  por t ion  of  t h e  r a r e f a c t i o n  wave is  then constructed,  by not ing t h a t  

t h e  I - c h a r a c t e r i s t i c s  ( r ' ight- t ravel l ing waves) have s lopes  given by 
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where u and c are now the  average between the values on both s ides  of t he  

c h a r a c t e r i s t i c s  l i n e ,  

t he  head of t h e  r a re fac t ion  wave overtakes the  shock f ron t .  

between t h e  waves then fol lows;  and, as the  shock continues with decreased 

s t r eng th  and ve loc i ty ,  a contact  l i n e  i n  addi t ion t o  the  r e f l ec t ed  wave is  

formed, 

across  t h e  f r o n t  i s  reduced, A contact l i ne ,  which separa tes  regions of 

unequal entropy, forms because f l u i d  p a r t i c l e s  passing through shocks of 

unequal s t r eng ths  a t t a i n  d i f f e r e n t  l eve l s  of entropy. A r e f l ec t ed  wave is 

required i n  order  t o  s a t i s f y  t h e  boundary conditions of equal pressure  and 

equal p a r t i c l e  ve loc i ty  across  a c m t a c t  l i ne .  

These waves are propagated with constant  s t r eng th  u n t i l  

An i n t e r a c t i o n  

The shock strecgth diiilinishes as t h e  d i f fe rence  i n  p a r t i c l e  ve loc i ty  

The remainder of  the  physical  plane may be constructed by repeat ing a 

few u n i t  operat ions presented i n  the  following sec t ion ,  

b. U n i t  Operations f o r  Wave In te rac t ions  

In t e rac t ion  of Shock and Rarefaction Waves 

The f l u i d  p r o p e r i t i e s  i n  regions 1, 2 and 4 a r e  completely known from 

t h e  i n i t i a l  condi t ions of t he  problem, (see f igure  2 ) ,  

t he  f l u i d  p rope r t i e s  i n  regions 10 and 20 represents  a t yp ica l  u n i t  operat ion 

f o r  t h e  in t e rac t ion  of shock and r a re fac t ion  waves. 

The determination of 

The p a r t i c l e  ve loc i ty  and 

pressure i n  regions 10 and 20 must be equal since t h e  regions a r e  separated by 

a contact  l i n e ,  thus 

The process from region 4 t o  region 10 i s  i sen t ropic ;  therefore ,  according t o  

(23) 

equation (loa) e z-l 



Also, t he  change i n  f l u i d  p rope r t i e s  across  a l e f t - t r a v e l l i n g  i s en t rop ic  wave 

(region 4 t o  region 10) is ,  from equation ( l o ) ,  

qC; - ''3 $5 - $! (kk,;-- I C q  ) 

The shock r e l a t ions  governing t h e  change from region 1 t o  region 20 a r e  

and 

( 2 5 )  

Equations GQto  e8)represent  a system of seven simultaneous equations 

which may be solved f o r  t he  unknowns U, p ,,u , u  , , c  , , a n d c  , 
10, p20 10 2 0  10 2 0  

thereby determining t h e  f l u i d  p rope r t i e s  of regions 10 and 20. 

these  equations requi res  a t r i a l  and e r r o r  procedure which i s  time consuming; 

therefore ,  a new graphical  method f o r  t h e  so lu t ion  of t hese  equat ions,  t o  be 

However, t o  so lve  
* 

explained i n  sec t ion  c ,  has  been developed, 

In te rac t ion  of I sen t ropic  Waves and Contact Lines - 

When an i s en t rop ic  wave (a  r i g h t  o r  l e f t  t r a v e l l i n g  c h a r a c t e r i s t i c )  i n t e r s e c t s  

a contact l i n e ,  i t  is  i n  general  necessary t o  have both r e f l e c t e d  and t ransmi t ted  

waves, 

i n t e r s e c t s  t h e  f irst  contact  l i n e .  

For example, t h e  c h a r a c t e r i s t i c  d iv id ing  regions 10 and 11 i n  f i g u r e  2 

The f l u i d  p rope r t i e s  i n  regions 2 1  and 30 may 

then be  determined from t h e  known p rope r t i e s  of regions 10, 11, and 2 0 ,  

p a r t i c l e  ve loc i ty  and pressure  on both s ides  of t h e  contac t  l i n e  ( regions 2 1  and 30) 

The f l u i d  

* 
See, f o r  instance,  pages 202-203, re f ,  10, o r  page 1026, r e f o  l l +  



must be eqcal ,  or 

and 

c M z t  - u,, 

Since the  i s e n t r o p i c  r e l a t i o n  is v a l i d  fo r  regions on t h e  same s i d e  of  a 

contact  l i n e ,  equation (29’) may be presented as  

The r e l a t ionsh ips  between f l u i d  proper t ies  across i s e n t r o p i c  waves, f o r  t h e  

regions under considerat ion,  a r e  

t 

(29) 

(29’) 

(31) 

&- I 
r.3* -- 620 = ( Qw- Qno) (32 j 

This system of  four  simultaneous equations (equations 29, 30, 31, and 32) may 

be solved f o r  t h e  four  unknowns: c c u which completely determine 

regions 21 and 30. A graphical  method, t o  be presented i n  t h e  next sec t ion ,  is  
2 1  30’  ‘21’ 30 

a l s o  ava i l ab le  f o r  the  so lu t ion  of t hese  equations,  

c. Grauhical Solut ions f o r -  Wave In te rac t ions  : 

To f a c i l i t a t e  construct ion of t h e  physical plane,  it is advantageous t o  

apply a graphical  method t o  solve t h e  aforementioned equations governing wave 

i n t e r a c t i o n s ,  

physical  plane map i n t o  po in t s  i n  t h e  s ta te  plane (see f igu res  2 and 3) .  

condi t ions of equal pressure  and equal p a r t i c l e  v e l o c i t y  across  a contact  l i n e  

suggest p l o t t i n g  t h e  c h a r a c t e r i s t i c s  on a p-u s t a t e  plane.  

Due t o  t h e  stepwise continuous construct ion,  regions i n  t h e  

The 

By in t eg ra t ing  equation ( l o ) ,  with limits cn t o  c and un t o  u, where t h e  

subsc r ip t  des igna tes  a reference region i n  which t h e  f l u i d  p rope r t i e s  are known, 

and dividing by c one may obtain the  equations of t h e  c h a r a c t e r i s t i c s  i n  the  
11 
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c/cl - u/c plane. 
1 

I 

Subscript 1 refers to the region ahead of the shock, and the process from 

condition (c, u) to condition (cn,un) must be isentropic. 

equation may be derived from equation (loa), 

The following 

The equations of the p-u state characteristics, as shown below, may now be 

derived by combining equations (33) and (34) 

(39)  

The upper and lower signs refer respectively to characteristics of family I1 

(changes across right-traveling waves) and family I (changes across left- 

travelling waves), The general practice for a graphical solution is to use 

the p-u state plane in which the characteristics given by equation (35) are 

curved lines.’’ Since many of these lines must be used for the graphical 

solution of the present problem, it is not convenient to plot them in the 

p-u plane, It is convenient, however, to use a (p/pl)*’ VSo (u/c ) modified 

state plane in which the characteristics are straight lines. 

illustrates the modified state plane with u/c as the abscissa and (p/p ) 

as the ordinate. In this plane, equations (35) represent two families of 

straight lines with slopes ~9 (pn/pl) 2 y  (cl/cn) 

relationship, equation (loa), it can be shown that f o r  regions of constant entropy 

Y- 1 - 
1 

Figure 3b e 
1 1 

ri - 
By using the isentropic 

the slope of equations (35) remains constant, For example, 

Y-1 
where the isentropic relationship (p / p ) 2v = c / c4 is valid from region 

2 to region 4 .  
2 4  2 



The shcck pQlar, a graphic21 re resentation of the shock relationships, - rP 
can also be plotted in the (p/p ) 2 Y  versus (u/c 1 state plane from equations 

(5) and (8),  Since only one shock polar is needed for the present problem, the 

fact that it is a curved line does not introduce any inconvenience, 

shock polar and state characteristics in the (p/p )2y versus (u/c ) state 

plane it is possible to solve for fluid properties graphically in regions 

1 1 * 

Using the 
Y-1 - 

1 1 

created by the wave interactions. 

Interaction of Shock and Rarefaction Waves 

The seven equations relating fluid properties after the initial shock- 

rarefaction interaction (section IV-3b) can be solved graphically with the 

use of the (p/p )zy versus (u/c ) state plane. 
regions 1, 2, and 4 known, it is possible to determine the fluid properties in 

v-! 
With the fluid properties in 

1 1 

regions 10 and 20 by the following graphical procedure, 

Region 2 lying on the shock polar and region 4 lying on a 11-characteristic 

(c1/ c2) and passing through point 2 are plotted 
Y-1 - 

with slope 4 9 (E/ ~ 1 ) ~  

in the state plane of figure 3b, 

passing along a I-characteristic with slope = 9 (p2/ PI)* 

shock polar represents all states immediately behind the shock front; therefore, 

Region 10 may be reached from region 4 by 
X L  

(cg/ Q )  The 

region 20 must be a point on the shock polar. Because of the boundary conditions 

across a contact line, regions 10 and 20 map into the same point in the modified 

p-u state plane. Therefore, the intersection of the I-characteristic through 

point 4 and the shock polar locates region 10 and 20. The shock front propagation 

velocity can be directly determined from equation (11) with u 

All other regions about a rarefaction -shock interaction may be located in the 

substituted for u. 
2 0  

state plane by an analogous procedure with suitable substitution made for p 

C O  

2 

and 
2 
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Interaction of an Isentropic Wave and a Contact Line 

The four equations relating fluid properties in regions about the inter- 

section of a rarefaction wave and a contact line can also be solved graphically 

through the use of the modified p-u state plane, 

in regions 10, 11, and 20, it is possible to graphically determine the fluid 

properties in regions 21 and 30 as follows. 

With known fluid properties 

Regions 10 and 11 which lie on the same 11-characteristic with slope 

(cl / c ) may be plotted in the state plane of figure 3. 
+ += ‘P2 1 P i )  2 

Region 21 may be reached from region 11 by passing along a I-characteristic with 
Y- 1 - 

, and region 30 may be reached from region 20 2Y 
Y-1 - 

by passing along a 11-characteristic of slope + 7 ri (p20 / PiI2Y (cl/ c 1 0  20 

Because of the boundary conditions across a contact line, regions 21 and 30 map 

into the same point in the modified p-u state plane, Therefore, the inter- 

section of these characteristic lines locates regions 21 and 30. Note that the 

slope of a 11-characteristic passing through point 10 is different from the 

slope of a 11-characteristic passing through point 20, even though points 10 

and 20 map into the same point in figure 3b, This difference is caused by the 

entropy change across the contact line dividing regions 10 and 20. All other 

regions about a characteristic line and contact line intersection may be located 

in the state plane by an analogous procedure provided proper substitution is made 

for the state variables. 

d. Examples 

Nuqerical examples for the present problem were obtained by applying the 

above procedures, 

parameters were chosen, 

For the numerical calculations, the following values of 
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I 

u = o  y =  1,4 

c = 1128 ft /sec 
1 

1 P 
p i s ton  t r ave l  x = 1 f t ,  

p l= atm 

The following t h r e e  problems were solved i n  d e t a i l .  

pressure r a t i o  

ex ten t  of  graphical  
soluticm-f inal  
excess pressure  r a t i o  

DIT 

number 
P - P1 drawing 

Pl  

0 * 200 1603 

2.434 

144.9 

The physical  plane f o r  problem 2 (s t rong shock) i s  shown i n  f i g u r e  2, and t h e  
0 

s ta te  p rope r t i e s  f o r  severa l  regions a r e  given i n  t a b l e  1. 

which are r e f l e c t e d  from t h e  contact  l i n e s  a re  of  neg l ig ib l e  s t r eng th  and the re fo re  

are not shown i n  t h e  physical  plane.  

Notice t h a t  some waves 

Graphical so lu t ions  f o r  t he  path of  t h e  shock f ron t  i n  t h e  physical  plane 

are shown i n  f i g u r e  4 f o r  a l l  t h r e e  problems. 

V, Accuracy of Solu t ions  

1, Accuracy of Assumptions 

The s implifying assumptions made i n  Section IV-2 introduce e r r o r s  of  unknown 

magnitude i n t o  t h e  present  ana ly t i ca l  solut ion.  

ca l cu la t ed  d i r e c t l y  because no exact so lu t ion  e x i s t s ;  however, an attempt t o  

determine t h e  order  of magnitude of  t h e  e r ro r s  was made and is given below. 

These inaccuracies  cannot be 

Assumption (1) states t h a t  t h e  c h a r a c t e r i s t i c s  a r e  s t r a i g h t  l i n e s  within t h e  

To ve r i fy  t h i s  assumption, shock waves of t h r e e  d i f f e r e n t  r a r e f a c t i o n  wave. 

- 17 - 



initial strengths (weak, strong, and very strong) were analyzed, For each 

case three positions within the rarefaction wave were considered; namely, 

head (u= u ), middle (u= 1/2 u ), and tail (u= 0 )  

line within the simple rarefaction wave was calculated first frQm equation (9) 

with appropriate values of u and c. 

slope of a characteristic directly behind the shock front was calculated from 

equations (S), (6), and (9 ) .  

as the approximate deviation of the characteristic curves from a straight line. 

It should be mentioned that the characteristic directly behind the shock front 

is not a continuation of the characteristic within the simple rarefaction wave, 

but it is another characteristic with the same velocity (u), Therefore, the 

difference in slope between these two characteristics does not represent the 

true variation of slope. 

error involved in assumption (1). 

2. For weak shocks, assumption (1) is nearly exact for the complete range 

of the rarefaction wave; however, for a very strong shock, the deviation becomes 

excessive for regions past the midpoint of the rarefaction wave. 

The slope of a characteristic 
2 2 

Then, using the same value of u, the 

The difference between these two slopes was used 

This difference was used only as an indication of the 

This error analysis is summarized in table 

Assumption (2) states that the particle velocity remains constant along 

any characteristic within the rarefaction wave, To check the accuracy of the 

assumption, the graphical solution by the stepwise characteristics method was 

applied to three different initial strength shocks. 

along selected characteristic lines, posi'tioned at various percentages of particle 

velocity decrease behind the head of the rarefaction wave, was calculated by the 

graphical characteristics method and is listed in table 3 .  It should be noticed 

that assumption (2) is reasonably accurate even for shocks which are initially 

very strong. 

The change in particle velocity 

From the data, one may conclude that the motion of the shock front 

is described with reasonable accuracy by the present analytical solution for shocks 

of strength <6. 
pz- P1 
P1 - 18 - 



2. Comparison of Solu t ions  

In  t h i s  s ec t ion ,  comparisons a r e  made among r e s u l t s  obta-ned from t h e  

t h r e e  methods, namely, 

1) weak shock so lu t ion ,  by Friedrichs 

2) present  a n a l y t i c a l  so lu t ion  

3) graphica l  so lu t ion  by t h e  method of c h a r a c t e r i s t i c s o  

Figure 4 represents  t h e  time-displacement curves f o r  shock f r o n t s  of i n i t i a l l y  

d i f f e r e n t  s t r eng ths  a t tenuated  by ra refac t ion  waves. 

methods y i e l d  similar r e s u l t s  f o r  t h e  shock path as shown i n  f i g u r e  4a. 

s t rong  shocks, f i g u r e  4b, both t h e  graphical so lu t ion  and t h e  present  

a n a l y t i c a l  so lu t ion  produce similar r e s u l t s  u n t i l  t h e  shock s t r eng th  equals 

approximately one h a l f  o f  i t s  o r i g i n a l  value. The weak shock approximation, 

on t h e  o the r  hand, contains considerable error f o r  a shock of t h i s  s t rength .  

For very s t rong  shocks, f i g u r e  4c, t h e  present a n a l y t i c a l  so lu t ion  and t h e  

graphica l  so lu t ion  are i n  c lose  agreement u n t i l  t h e  shock s t r eng th  equals 

about 2/3 of  i t s  o r i g i n a l  value. 

f i g u r e  4c f o r  comparison. 

is not mathematically cons is tan t .  

time l i n e  behind t h e  s t rong  shock f r o n t  as computed by t h e  t h r e e  methods i s  

i l l u s t r a t e d  i n  f i g u r e  5 .  With t h e  present  ana ly t i ca l  so lu t ion ,  it is  not  

poss ib l e  t o  c a l c u l a t e  t h e  complete pressure  d i s t r i b u t i o n  behind t h e  shock 

f ron t .  

For weak shocks, a l l  

For 

The weak shock approximation is p l o t t e d  i n  

A t  t h i s  shock strength,  t h e  weak shock approximation . 
The pressure d i s t r i b u t i o n  along a constant 

However, t h e  pressure  may be ca lcu la ted  a t  two po in t s ;  

1) d i r e c t l y  behind t h e  shock f ron t ,  and 

2) a t  t h e  t a i l  of t h e  r a r e f a c t i o n  wave. 

A s  a rough approximation t o  t h e  pressure,  a l i n e a r  d i s t r i b u t i o n  between t h e s e  

two p o i n t s  is assruped. 

well with t h e  graphica l  so lu t ion ,  see f igure  5 .  

This approximation t o  t h e  pressure  agrees reasonably 

The small pressure  d i s c o n t i n u i t i e s  i n  
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t he  graphical so lu t ion  a r e  caused by t h e  r e f l e c t e d  waves which o r i g i n a t e  a t  

t he  shock-rarefaction in t e rac t ions .  

Figure 6 represents  t h e  decrease i n  propagation v e l o c i t y  of a decaying 

s t rong shock as ca lcu la ted  by t h e  t h r e e  methods. 

i l l u s t r a t e d  i n  f i g u r e  7 .  

The pressure decay is  

VI. Behavior of Weak Shocks a t  Large Values of  Time according t o  
-Approximate Solut ions 

According t o  F r i ed r i chsq  approximation f o r  weak shocks, t h e  d is tance  

between the shock f r o n t  and t h e  t a i l  of t h e  r a r e f a c t i o n  wave i.e.,  t h e  "width 

of t h e  shock wave," increases  according t o  t h e  square root  of  time f o r  l a rge  

values  o f  time. 

shock wave" reduces t o  zero s i n c e  t h e  shock and -arefact ion t a i l  i n t e r s e c t  

a t  some f ini te  l a rge  time. 

t h e  shock f ron t  ends a t  some f i n i t e  time, The d i f fe rence  between these  two 

approximate so lu t ions  i s  shown schematically i n  f i g u r e  8,  

With our present  a n a l y t i c a l  approximation, t h e  "width of t h e  

Thus, using t h e  present  approximation procedure, 

The disagreement between t h e  two so lu t ions  can be a t t r i b u t e d  t o  a 

d i f fe rence  i n  both t h e  loca t ion  of  t h e  r a r e f a c t i o n  wave and t h e  p o s i t i o n  of t h e  

shock front .  

s t r a i g h t  l i ne  i n  t h e  x-t  plane,  (see f i g u r e  8) .  By FriedrichsO method, i n  which 

t h e  entropy change across  t h e  shock f r o n t  i s  neglected,  t h e  f l u i d  p r o p e r t i e s  a t  

t h e  t a i l  of t h e  r a r e f a c t i o n  wave are i d e n t i c a l  with t h e  p r o p e r t i e s  of  t h e  

undisturbed f l u i d ,  and t h e  s lope o f  t h e  t a i l  is l / c  . 
approach considers t h e  entropy change ac ross  t h e  shock f ron t .  

p ressure  and sound speed a t  t h e  t a i l  of  t h e  r a r e f a c t i o n  wave a r e  both s l i g h t l y  

l a r g e r  than t h e  values i n  t h e  undisturbed region, and t h e  s lope of t h e  t a i l  i s  

In both approximations, t h e  t a i l  of t h e  r a r e f a c t i o n  wave i s  a 

However, t h e  present  
1 

Therefore, t h e  
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The exact slope of the rarefaction tail before it is effected b y  the 

reflected wave system (region 3 of figure 2) is l/c Thus, the present 

approximation gives the correct location of the initial portion of the tail 

of the rarefaction wave, 

front deteriorates, and the slope of the tail must approach l/c . Therefore, 
Friedrichs' approximation gives the correct slope of the tail at large values 

of time. The tail must lie between these two straight lines as shown in 

figure 8, although its exact location is ;lot known. 

3 

At large values of time, the strength of the shock 

1 

The path of the shock front in the x-t plans calculated by the present method 

always lies above the shock calculated by Friedrichs' method. 

in iocation occurs not oniy because of Friedrichs' isentropic assumption but 

also because of his approximate expression for shock velocity (see appendix B). 

The above differences cause the solutions to conflict at large values of 

This difference 

time. Unfortunately, the exact position of the shock path is not known. The 

question whether, at large values of time, the "width of shock" reduces to zero, 

approaches a constant, or increases monotonically is still unanswered. 

VII. Concluding Remarks 

The approximate analytical expression for the path of a decaying strong 

plane shock in an ideal gas is developed in the body of this report. 

solution is significant since no exact analytical solution to the protilem exists, 

and numerical solutions of the characteristic equations in finite-difference form 

are too lengthly, 

assumptions considered in Section IV-2. 

error in the early stage of the shock front because the rarefaJtion wave has not 

yet undergone many deflections caused by the shock-rarefaction interactions, 

From the analytical solution, equations for the pressure and velocity decay of a 

shock wave are developed, 

Such a 

The solution as presented is based upon certain simplifying 

These assumptions introduced very little 
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Because of the absense of an exact analytical solution, a solution to 

the shock attenuation problem was also carried out graphically by the method 

of characteristics, A new procedure was developed in this phase which 

facilitated the otherwise lengthy calculations inherent in the step-wise 

characteristics method. 

problem utilizes the (p/p ) 2 y  

characteristics method then comprised the basis of comparison for the approxi- 

The modified graphical method for this particular - ri 
vs. u/cl state plane, This step-wise 

1 

mate analytical solution, 

The results of the two solutions (analytical and graphical) are comparable 

in the early stages of shock front propagation. 

analytical solution, as compared with that of the graphical solution, decreases 

for later stages of strong shock front propagation, 

The accuracy of the approximate 

These solutions were also compared with an approximate solution for weak 

shocks by Friedrichs. 

stages of the wave motion; however, a significant difference exists between the 

present analytical solution and Friedrichs' solution at very large values of 

time. 

For weak shocks, all three solutions agree in the early 

By a modification of the equation of state, the approximation technique 

developed in this report can be extended to other media. 

of the spherical shock problem in water, the next phase of this project will be 

to study (by the methods developed in this report) the decay of a strong plane 

shock in water. Following this study, an investigation of the spherical shock 

problem will be undertaken, Although only one space coordinate is required to 

describe the position of the shock front, the area of the spherical shock front 

is not constant. 

characteristics will be required, 

Regarding the solution 

Therefore, a modification of the present stepwise method of 
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The apparent accuracy of air approxiiiiation procedure , for one-dimensional 
unsteady strong shocks, suggests a possible extension of the method into other 

problems of one-dimensional unsteady gas motion and two-dimensional steady 

motion, For example, those problems studied by Friedrichs in reference (7), 

such as the decay of shocks in two-dimensional steady flow and decaying n-waves, 

may be extended to include the strong shock range. 
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--- FRIEDRICHS' SOLUTION FOR 
WEAK SHOCKS 

50 loo 

PRESENT ANALYTICAL SOLUTION 
FOR STRONG SHOCKS 

----- 

GRAPHICAL SOLUTION BY 
STEPWISE 
CHARACTERISTICS METHOD 

(c) 
1- '-' - .274 FIGURE 4. COMPARISON OF SOLUTIONS 

(a) weak shock, i n i t i a l  excess pressure rat io  pr 
(b) strong shock, i n i t i a l  excess pressure rat io  = 6.264 
(c) very strong shock, i n i t i a l  excess pressure ratio= 428.9 
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C/CI 

1 
1.472 
1,119 
1.418 
1 e 367 
1,318 
1. 268 
E 0 217 
1 168 
1.421 
1,371 
1,321 
1 ,, 270 
1 * 2 2 1  
1.171 
1,120 
1.373 
1 ., 370 
1,319 
1.270 
II e 324 
II 275 

1,269 
1.325 
1.276 
1.227 
s 0 294 
P 275 
1,226 
1 246 
P o  197 
P , 248 
1 e 200 

1,318 

1.223'* 

0 
1 ., 773 

0 
l o  500 
1 250 
1,000 

750 
,500 
250 

1 483 
1 234 

981 
736 
481 
230 

0 015 
1,483 
1 242  

986 
741 

1 242 
0 990 
0 990 
a 742 

l o  231 
982 
738 

P ., 231 
0 990 
(1 745 
0 990 
748 

.984 
e 738 
.984 

PIP, 

1 
7 264 
1.051 
5 569 
4 267 
3.344 
2,552 
1,748 
1.435 
5 705 
4 (I 419 
3,399 
2,586 
1,961 
1,463 
1 070 
5 640 
5.529 
3 0 347 
2,586 
4 a 371 
3,359 
3 0 347 
2,567 
4,411 
3,378 
2 568 
4,415 
3 0 353 
2,553 

2 552 
3,422 
a 0 59s 
3,434 

3,378 

TABLE 1--PARTIAL LIST OF STATE PROPERTIES 

(Regions Correspond t o  Figure 2) 

i n i t i a l  da t a :  u = 0 ,  c = 1128 ft /sec,  p = 1 atm 
1 1 1 



Initial 
Shock Strength, 
Excess Pressure 

Ratio 

Head (u= u ) 
2 

Middle (u= 1/2 u 

I p2 - pl 

0 

.014 

1 ? 

weak 1 
.274 I I--- Strong 

~~ 1 Very Strong 

Position 
within 

Rarefaction 
wave 

Approximate Deviation 
In Slope of Characteristic 

Lines 

s - s  
1 2  

t 
9 - 

1 

Head 0 

Middle I 4.28 

10.35 

0 

Tai 1 i 
He ad 

Middle 17.1 

81.2 Tai I 

TABLE 2 

MAGNITUDE OF ERROR IN SLOPE CAUSED BY ASS UliING 

THE CHARACTERISTICS ARE STRAIGHT L I W .  

s = 
1 

s = 
2 

Note: 

slope of characteristic directly behind shock front 

slope of characteristic within simple rarefaction wave 

Both characteristics have the same particle velocity 
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Initial 
Shock Strength, 
Excess Pressure 

Ratio 

Weak 

.274 

1 

Strong 

6 a 264 

1- Very Strong 

428,9 

Posit ion Within 

Percent behind 
Head of Wave 

Rare f act ion Wavc - - 

u - 1 1  
2 

0 - 6  
U 
2 

25 

15 

30 

44 

17 

34 

Change in Particle 
Velocity Along 

A Characteristic line 

-0.38 

-0.43 

-1.13 

-1.52 

-1.60 

-1,90 

-2.60 

TABLE 3 

CHANGE IN PARTICLE VELOCITY ALONG A CHARACTERISTIC 

OBTAINED BY GRAPHICAL (CHARACTERISTICS) SOLUTION 

u = piston velocity 

u = particle velocity at position of interest within 

uB= particle velocity directly behind shock 

u = particle velocity within simple rarefaction wave 

2 

rarefaction wave 

S 
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X ,  NOTATIONS : 

U gas particle  ve loc i ty  

U shock propagation ve loc i ty  

C sound speed 

Y spec i f ic  heat rat i o  

P dens it y 

P pressure 

t time 

X displacement 

Sub script  1 S igni f ies  conditions ahead of the shock 

Subscript 2 S ign i f i e s  conditions behind the i n i t i a l  
portion of  the shock 
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APPENDIX A 

Behavior of the Shock Polar and Characteristic Lines in the State Planes 

In applying the graphical method, since frequent use is made of the shock 

polar and the state characteristic lines, it is desirable to establish their 

behavior in the state planes. A discussion of the behavior of the shoc polar 

vs. 
A 

vso u/c plane and in the (p/p ) 2 y  and characteristic lines in the p/p 
1 1 1 

u/c plane will be given,, 

plane is discussed in detail in reference [ll], Chapter 25, 

The behavior of these curves in the c-u state 
1 

The state planes 

are shown in figure A. 

Y 
C, 

vso u/c plane, a II- 

One 

# In both the p/p vs. u/c plane and the (p/p ) 

characteristic is shown to intersect the shock polar at two points. 
1 1 1 1 

intersection is at point 2, which corresponds to the state of a region 

immediately behind the shock front. 

intersection exists, 

It will be shown that another 

It will first be shown'that, at point 2 where isentropic expansion begins, 

the slope of the II-characteristic is greater than the slope of the shock polar, 

Hence, part of the characteristic curve must lie below the shock polar, as shown 



in figure A.  Proof of at least one other intersection will be established by 

showing that, at the vertical axis, p >p e The following proof refers to 

the p/p VS. u/cl state plane. 
3 1  

1 

The equations for the shock polar and characteristics are respectively, 
P 

( 5  - d 
(All) 

Ak - -  

and 

where subscript 2 refers to the region immediately behind the shock, To 

determine the slope of the characteristic at the point of intersection, point 

2 in figure A, p is equal to p and equation ( A .  4a) becomes 
2 

To determine c /c 

shock relations are used, 

as a function of the pressure ratio p / p the following 
1 2  2 l Y  

and 

Solving for UPc from equation (A,S)  and substituting it into equation ( A . 6 1 ,  
1 .  
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To simplify the following equations, y is set equal to 1.4. Equat,ion (A.7a) 

then becomes 

(A. ib) 

By substituting equation (A.7a) into (A,4b), the slope of the characteristic 

at point 2, may be expressed as a function of p / p . 
2 1  

The slope of the shock polar, equation (A,3a), with y = 1.4 is 

Let R represent the ratio of the slope of the characteristic to the slope 

of the shock polar at point 2, or 

Equation (A.9) may be simplified into the following inequality, ,, 

(A. 8) 

(A. 3b) 
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Numerical calculations show that for any value of p / p 

R is also greater than one, 

greater than one for any y greater than 1.1. 

one part of the characteristic must lie below the shock polar. 

greater than one, 
2 1  

Also, it can be shown numerically that R is 

The above ratio illustrates that 

The expansion portion of the characteristic will cross the shock polar again 

if the final pressure p is greater than the initial pressure p , or, if 
3 1 

From equation (A .2 ) ,  with u= o and p= p , one obtains P 3 / P l ’ 1  3 

4 -  (A. lo) 

The pressure ratio p / p may be obtained as a function of U/c by combining 
3 1  1 

Numerical calculations of equation (A.ll) show that p / p 

U/c Hence, the lower part of 

the characteristic lies above the shock polar which indicates at least one 

other intersect ion. 

> 1 for any 
3 1  

> 1 and for y equal to or greater than 1.1. 
1 



APPENDIX B 

Relat ive Pos i t ions  of Shock Paths According t o  the  Two Approximations 

In Sect ion V I ,  it is s t a t e d  t h a t ,  f o r  t h e  same i n i t i a l  condi t ions,  t he  

shock pa th  i n  t h e  x - t  piane calcGlated from Fr iedr ichs"  equation l ies  below 

t h e  path ca lcu la ted  from the present  equations,  

cont r ibu te  t o  t h i s  di f fe rence :  

There a r e  two f a c t o r s  which 

1) Fr iedr ichs  utilized an approximate equation f o r  the  shock ve loc i ty  as 

I t  will be shown t h a t  t h e  values  of shock a funct ion of p a r t i c l e  ve loc i ty  u, 

ve loc i ty  U gnven by this approximate equation a re  h r g e r  than th: values  given 

by the  exact equation a t  t he  same c.  

therefore ,  t he  shock path given by t h e  approximate equation has a smaller  s lope  

than t h a t  given by the  exact equation, 

The slope of  t he  shock path i s  1 / U ;  

2) The r a re fac t ion  wace ca lcu la ted  by Fr iedr ichso  method is propagated 

a t  a slower r a t e  than thae ca lcu la ted  by t h e  present  method, 

r a re fac t ion  wave ca lcu la ted  by the  present  method overtakes the  shock and 

decreases i t s  ve loc i ty  more rapidly.  ZonsequentPy, t h e  shock path according t o  

Therefore, t h e  

the  

The 

present  approximation Pies above t h a t  of Fr iedr ichs 

Proof of 1: 

The exact  shock equation (U- f [u)9 used i n  t he  present  method is  

where 

approximate equation u,eed i n  Fr iedr ichs"  method is 

The exact shock r e l a t i o n s h i p  i n  terms of T i s  



Equation (B,3) can be expanded i n t o  

Subtracting the  approximate equation (B.2) from the  exact equation (B.4), 

one f inds  t h a t  t h e  remainder i s  a negat ive quant i ty  s ince  the  magnitude of 

each negative term is l a rge r  than the  subsequent p o s i t i v e  term, i ,e. ,  

This ana lys i s  i l l u s t r a t e s  t h a t ,  f o r  t he  same u, t he  value of U given by t h e  

approximate equation i s  l a rge r  than the  value given by the  exact equation. 

Proof of 2:  

Reference 11, page 1006 i l l u s t r a t e s  t h a t ,  f o r  Y = 1 0 4 ,  t he  s lope of t he  

shock polar  i n  the  u-c plane i s  always g r e a t e r  than o r  equal t o  the  s lope of a 

c h a r a c t e r i s t i c  l i ne .  The typ ica l  s lope of these  curves i s  shown below, 

SHOCK ?6kAR 

LHW A c 7  ER 1 SfiC 

h R  ( ~ ~ ~ w u L a ~ ~  ’j 

A1 
Consider a shock with the  p a r t i c l e  ve loc i ty  u 

expansion from u 

behind it and an i s en t rop ic  
2 

t o  a smaller  p a r t i c l e  ve loc i ty  u e The f i g u r e  shows t h a t  
2 4 



the resulting sound speed c 

assuming that the shock is an isentropic compression wave (Friedrichs' 

is larger than cg, where c' is obtained by 
4 4 4 

assumption). The characteristics within the rarefaction wave have velocities 

given by u + c; therefore, for a given value of u, the velocity of a 

characteristic given by Friedrichst method is less than the velocity given 

by the present method. 
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